Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(23)2023 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-38068235

RESUMO

Laminate substrates in advanced IC packages serve as not only the principal heat dissipation pathway but also the critical component governing the thermomechanical performance of advanced packaging technologies. A solid and profound grasp of their thermomechanical properties is of crucial importance to better understand IC packages' thermomechanical behavior. This study attempts to introduce a subregion homogenization modeling framework for effectively and efficiently modeling and characterizing the equivalent thermomechanical behavior of large-scale and high-density laminate substrates comprising the non-uniform distribution and non-unidirectional orientation of tiny metal traces. This framework incorporates subregion modeling, trace mapping and modeling, and finite element analysis (FEA)-based effective modeling. In addition, the laminates are macroscopically described as elastic orthotropic or elastic anisotropic material. This framework is first validated with simple uniaxial tensile and thermomechanical test simulations, and the calculation results associated with these two effective material models are compared with each other, as well as with those of two existing mixture models, and direct the detailed FEA. This framework is further tested on the prediction of the process-induced warpage of a flip chip chip-scale package, and the results are compared against the measurement data and the results of the whole-domain modeling-based effective approach and two existing mixture models.

2.
Micromachines (Basel) ; 14(7)2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37512636

RESUMO

This study aims to establish an accurate prediction model using artificial neural networks (ANNs) to effectively and efficiently predict the process-induced warpage of a flip-chip chip-scale package (FCCSP). To enhance model performance, a novel subdomain-based sampling strategy and Taguchi hyperparameter optimization are proposed in the ANN algorithm. To simulate the warpage behavior the FCCSP during fabrication, a process modeling approach is proposed, where the viscoelastic behavior of the epoxy molding compound is included, in which the viscoelastic properties are determined using dynamic mechanical measurement. In addition, the temperature-dependent thermal-mechanical properties of the materials in the FCCSP are assessed through thermal-mechanical analysis and dynamic mechanical analysis. The modeled warpage results are verified by the warpage measurement. Next, warpage parametric analysis is performed to identify the key factors most affecting warpage behavior for use in the construction of the warpage prediction model. Moreover, the advantages of the proposed sampling and hyperparameter tuning approaches are proved by comparing with other existing models, and the validity of the developed ANN-based deep learning warpage prediction model is demonstrated through a validation dataset.

3.
Micromachines (Basel) ; 14(7)2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37512669

RESUMO

This study aims to develop a 30 kHz/12 kW silicon carbide (SiC)/Si integrated hybrid power module (iHPM) for variable frequency drive applications, particularly industrial servo motor control, and, additionally, to theoretically and experimentally assess its dynamic characteristics and efficiency during operation. This iHPM integrates a brake circuit, a three-phase Si rectifier, and a three-phase SiC inverter within a single package to achieve a minimal current path. A space-vector pulse width modulation (SVPWM) scheme is used to control the inverter power switches. In order to reduce parasitic inductance and power loss, an inductance cancellation design is implemented in the Si rectifier and SiC inverter. The switching transients and their parasitic effects during a three-phase operation are assessed through an electromagnetic-circuit co-simulation model, by which the power loss and efficiency of the iHPM are estimated. The modeled parasitic inductance of the inverter is validated through inductance measurement, and the effectiveness of the simulated results in terms of switching transients and efficiency is verified using the experimental results of the double pulse test and open-loop inverter operation, respectively. In addition, the power loss and efficiency of the SiC MOSFET inverter are experimentally compared against those of a commercial Si IGBT inverter.

4.
Materials (Basel) ; 14(17)2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34500909

RESUMO

This study attempts to investigate the warpage behavior of a flip chip package-on-package (FCPoP) assembly during fabrication process. A process simulation framework that integrates thermal and mechanical finite element analysis (FEA), effective modeling and ANSYS element death-birth technique is introduced for effectively predicting the process-induced warpage. The mechanical FEA takes into account the viscoelastic behavior and cure shrinkage of the epoxy molding compound. In order to enhance the computational and modeling efficiency and retain the prediction accuracy at the same time, this study proposes a novel effective approach that combines the trace mapping method, rule of mixture and FEA to estimate the effective orthotropic elastic properties of the coreless substrate and core interposer. The study begins with experimental measurement of the temperature-dependent elastic and viscoelastic properties of the components in the assembly, followed by the prediction of the effective elastic properties of the orthotropic interposer and substrate. The predicted effective results are compared against the results of the ROM/analytical estimate and the FEA-based effective approach. Moreover, the warpages obtained from the proposed process simulation framework are validated by the in-line measurement data, and good agreement is presented. Finally, key factors that may influence process-induced warpage are examined via parametric analysis.

5.
Materials (Basel) ; 14(18)2021 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-34576651

RESUMO

This study introduces an effective and efficient dynamic electro-thermal coupling analysis (ETCA) approach to explore the electro-thermal behavior of a three-phase power metal-oxide-semiconductor field-effect transistor (MOSFET) inverter for brushless direct current motor drive under natural and forced convection during a six-step operation. This coupling analysis integrates three-dimensional electromagnetic simulation for parasitic parameter extraction, simplified equivalent circuit simulation for power loss calculation, and a compact Foster thermal network model for junction temperature prediction, constructed through parametric transient computational fluid dynamics (CFD) thermal analysis. In the proposed ETCA approach, the interactions between the junction temperature and the power losses (conduction and switching losses) and between the parasitics and the switching transients and power losses are all accounted for. The proposed Foster thermal network model and ETCA approach are validated with the CFD thermal analysis and the standard ETCA approach, respectively. The analysis results demonstrate how the proposed models can be used as an effective and efficient means of analysis to characterize the system-level electro-thermal performance of a three-phase bridge inverter.

6.
J Nanosci Nanotechnol ; 15(3): 2179-84, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26413637

RESUMO

As the strained engineering technology of metal-oxide-semiconductor field effect transistors (MOSFET) is scaled beyond the 22 nm node critical dimension, shallow trench isolation (STI) becomes one of the most important resolutions for isolate devices to enhance the carrier mobility of advanced transistors. Several key design factors of n-type MOSFET (NMOSFET) under the resultant loadings of STI structures and contact etching stop layers are sensitively analyzed for silicon channel stress via finite element method-based simulations integrated with the use of design of experienmnts. NMOSFETs with 15 nm deep sunken STI have achieved a ~5% mobility enhancement as compared with a regular STI shape. By adopting simulation-based factorial designs, we have determined that the design factor of recess depth in STI is a critical factor influencing device performance. Moreover, a response surface curve on carrier mobility of NMOSFET under a consideration of combining the sunken STI and source/drain lengths is further presented in this research.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...